Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine
نویسندگان
چکیده
Many cell types form three-dimensional aggregates (MCS; multicellular spheroids), when they are cultured under microgravity. MCS often resemble the organ, from which the cells have been derived. In this study we investigated human MCF-7 breast cancer cells after a 2 h-, 4 h-, 16 h-, 24 h- and 5d-exposure to a Random Positioning Machine (RPM) simulating microgravity. At 24 h few small compact MCS were detectable, whereas after 5d many MCS were floating in the supernatant above the cells, remaining adherently (AD). The MCS resembled the ducts formed in vivo by human epithelial breast cells. In order to clarify the underlying mechanisms, we harvested MCS and AD cells separately from each RPM-culture and measured the expression of 29 selected genes with a known involvement in MCS formation. qPCR analyses indicated that cytoskeletal genes were unaltered in short-term samples. IL8, VEGFA, and FLT1 were upregulated in 2 h/4 h AD-cultures. The ACTB, TUBB, EZR, RDX, FN1, VEGFA, FLK1 Casp9, Casp3, PRKCA mRNAs were downregulated in 5d-MCS-samples. ESR1 was upregulated in AD, and PGR1 in both phenotypes after 5d. A pathway analysis revealed that the corresponding gene products are involved in organization and regulation of the cell shape, in cell tip formation and membrane to membrane docking.
منابع مشابه
Proteome Analysis of Human Follicular Thyroid Cancer Cells Exposed to the Random Positioning Machine
Several years ago, we detected the formation of multicellular spheroids in experiments with human thyroid cancer cells cultured on the Random Positioning Machine (RPM), a ground-based model to simulate microgravity by continuously changing the orientation of samples. Since then, we have studied cellular mechanisms triggering the cells to leave a monolayer and aggregate to spheroids. Our work fo...
متن کاملPathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach
Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under...
متن کاملThe role of Rad51 protein in radioresistance of spheroid model of DU145 prostate carcinoma cell line
Background: Rad51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad51 protein level in DU145 spheroids, and monol...
متن کاملInduction of T Regulatory Subsets from Naïve CD4+ T Cells after Exposure to Breast Cancer Adipose Derived Stem Cells
Background: Adipose derived stem cells (ASCs) provoke the accumulation and expansion of regulatory T cells, leading to the modulation of immune responses in tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells were co-cultured with ASCs derived from breast cancer or normal breast ...
متن کاملComparison of radiosensitizing effect of Resveratrol on monolayer and spheroid culture of DU145 prostatic cell line
Background: Radiotherapy is an established therapeutic modality for prostate cancer. Resveratrol, a natural antioxidant, has been shown to inhibit carcinogenesis and to block the process of tumor initiation and progression. No data is available on the response of cellular spheroid to Reseveratol. In this study we have examined the effect of Resveratol on the radiation response of human p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016